首页 | 本学科首页   官方微博 | 高级检索  
     

改进K-means算法在入侵检测中的应用研究
作者姓名:王茜  刘胜会
作者单位:重庆大学 计算机学院,重庆 400044
摘    要:为了弥补传统K-means聚类算法在K值确定和初始中心选择难等方面的不足,基于“合并与分裂”思想,提出一种改进的K-means聚类算法。将数据独立程度概念引入实验数据子集构造理论中,利用独立程度评价属性的重要性;根据点密度将数据集合并为若干类,结合最小支撑树聚类算法与传统K-means聚类算法实现分裂;使用KDD Cup99数据集对改进算法在入侵检测中的应用进行仿真实验。结果表明,改进算法在检测率和误报率方面均优于传统K-means算法。

关 键 词:入侵检测  数据挖掘  聚类算法  K-means聚类  最小支撑树  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号