首页 | 本学科首页   官方微博 | 高级检索  
     


Simultaneous modular reduction and Kronecker substitution for small finite fields
Authors:Jean-Guillaume Dumas  Laurent Fousse  Bruno Salvy
Affiliation:
  • a Laboratoire J. Kuntzmann, Université de Grenoble, UMR CNRS 5224, BP 53X, 51, rue des Mathématiques, F38041 Grenoble, France
  • b Algorithms Project, INRIA Paris-Rocquencourt Research Center, 78153 Le Chesnay, France
  • Abstract:We present algorithms to perform modular polynomial multiplication or a modular dot product efficiently in a single machine word. We use a combination of techniques. Polynomials are packed into integers by Kronecker substitution; several modular operations are performed at once with machine integer or floating point arithmetic; normalization of modular images is avoided when possible; some conversions back to polynomial coefficients are avoided; the coefficients are recovered efficiently by preparing them before conversion. We discuss precisely the required control on sizes and degrees. We then present applications to polynomial multiplication, prime field linear algebra and small extension field arithmetic, where these techniques lead to practical gains of quite large constant factors.
    Keywords:Kronecker substitution   Finite field   Modular polynomial multiplication   REDQ (simultaneous modular reduction)   Small extension field   Compressed matrix multiplication
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号