首页 | 本学科首页   官方微博 | 高级检索  
     


Use of single‐wall carbon nanohorns as counter electrodes in dye‐sensitized solar cells
Authors:Rui Cruz  Lúcia Brandão  Adélio Mendes
Affiliation:LEPAE – Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, , 4200‐465 Porto, Portugal
Abstract:The catalytic activity of single‐wall carbon nanohorns (SWNH) as counter electrodes (CE) of dye‐sensitized solar cells (DSC) was studied for the iodide/triiodide redox reaction. The catalytic activities of SWNH and high surface SWNH (HS‐SWNH) obtained by partial oxidation of SWNH were assessed based on charge‐transfer resistances (Rct) and current–voltage curves. A half‐cell configuration was used, and CE performances were compared to CEs made of carbon black (CB) and Pt. A CE assembled with HS‐SWNH and mixed with 10 wt.% of hydroxyethyl cellulose (HEC) ‐ HS‐SWNH/HEC was found to have the highest electrocatalytic activity (lowest Rct) among all the carbon‐based CEs tested when annealed at 180 °C (Rct = 141 Ω cm2); however, a very thick film (several tens of µm) would be required in order to perform comparably to a Pt CE. The annealing of such CE at higher temperatures (above 400 °C) did not improve its catalytic activity, contrary to the other studied carbonaceous CEs. The redox catalytic activity of SWNH and HS‐SWNH decorated with Pt was also studied on a half‐cell configuration and compared to that of Pt/CB and pristine Pt. The Pt/SWNH/HEC CE showed the highest electrocatalytic activity per mass of Pt, needing just 50% of Pt load to yield the same electrocatalytic activity of a DSC equipped with a Pt CE, but having half of its transparency. Additionally, applications in temperature‐sensitive substrates are envisioned for the Pt/SWNH/HEC CE due to the use of lower annealing temperatures. Copyright © 2012 John Wiley & Sons, Ltd.
Keywords:dye‐sensitized solar cell  cathode  single‐wall carbon nanohorns  platinum
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号