摘 要: | 相比于传统流水线,混合流水车间具有更高的灵活性,能适应多变的生产场景,但其排产方案的求解复杂度更高,是现代实际制造系统中的常见问题。针对群智能进化算法在解决该问题时计算难度大且搜索效率不高的问题,以最小化总完工时间为优化目标,提出了一种混合禁忌搜索遗传优化算法。该算法根据排产问题中所有工件具有相同生产工艺、工件数量多、各阶段并行机不同速的特点,采用了基于首阶段工件顺序的单层编码、考虑机器选择三层优先级的解码方法、多种遗传算子和禁忌搜索算子,具有更加优秀的搜索性能,在保证解质量的基础上提高了算法的收敛速度。最后,通过40个算例和实际应用案例评估算法性能,并将其与其他算法进行比较。实验结果表明,所提出的算法在求解中规模算例、大规模算例和加工车间案例时表现优秀,排产结果的完工时间平均缩短了10.71%,算法达到最优解所需的迭代次数减少了25.72%,运行时间缩短了10.79%。
|