首页 | 本学科首页   官方微博 | 高级检索  
     


Training algorithm for radial basis function neural network based on quantum-behaved particle swarm optimization
Abstract:Radial basis function (RBF) networks are widely applied in function approximation, system identification, chaotic time series forecasting, etc. To use a RBF network, a training algorithm is absolutely necessary for determining the network parameters. The existing training algorithms, such as orthogonal least squares (OLS) algorithm, clustering and gradient descent algorithm, have their own shortcomings respectively. In this paper, we propose a training algorithm based on a novel population-based evolutionary technique, quantum-behaved particle swarm optimization (QPSO), to train RBF neural network. The proposed QPSO-trained RBF network was tested on non-linear system identification problem and chaotic time series forecasting problem, and the results show that it can identify the system and forecast the chaotic time series more quickly and precisely than that trained by the particle swarm algorithm.
Keywords:RBF neural network  evolutionary algorithm  QPSO  system identification  time series
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号