首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of fuel composition on chemiluminescence emission in premixed flames of CH4/CO2/H2/CO blends
Affiliation:1. Laboratory of Research on Fluid Dynamics and Combustion Technologies (LIFTEC), CSIC – University of Zaragoza, Spain;2. Fluid Mechanics Group/LIFTEC, CSIC-University of Zaragoza, Spain;1. Depto. de Ciencias Ambientales, DICIVA, Universidad de Guanajuato, México;2. Unidad de Ingeniería Avanzada, Centro de Investigación y Estudios Avanzados (CINVESTAV), Av. del Bosque 1145, Zapopan 45019, Jalisco, México;1. Institute of Microelectronics, Department of Electrical Engineering, National Cheng-Kung University, 1 University Road, Tainan 70101, Taiwan, ROC;2. Department of Chemical Engineering, National Cheng-Kung University, No. 1, University Road, Tainan 70101, Taiwan, ROC;1. Boreskov Institute of Catalysis, Prosp. Akademika Lavrentieva 5, Novosibirsk 630090, Russia;2. Novosibirsk State University, Pirogova St. 2, Novosibirsk 630090, Russia;3. FSUE Krylov State Research Centre, Moskovskoye Shosse 44, St. Petersburg 196158, Russia;1. Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan;2. Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan
Abstract:The growing concern about pollutant emissions and depletion of fossil fuels has been a strong motivator for the development of cleaner and more efficient combustion strategies, such as the gasification of coal, biomass or waste, which have increased the interest in using a new type of fuels, mainly composed of CH4, H2, CO and CO2.These new fuels, commonly called syngas, display a wide range of compositions, which affects their combustion characteristics and, in some cases, are more prone to instabilities or flashback. Since flame properties have been demonstrated to be strongly related to equivalence ratio, a precise measurement of the flame stoichiometry is a key pre-requisite for combustion optimization and prevention of unstable regimes. In particular, chemiluminescence emission from flames has been largely tested for stoichiometry monitoring for methane flames, but its use in syngas flames has been far less studied. Consequently, the main goal of this work is analyzing the effect of fuel composition on the chemiluminescence vs. equivalence ratio curves for different fuel blends, as a first approach for a wide range of syngas compositions. The experimental results revealed that the ratio OH*/CH*, which had been widely demonstrated to be the best option for methane, may not be suitable for monitoring with certain fuels, such as those with a high percent of hydrogen. Alternatively, other signals, in particular the ratio OH*/CO2*, appear as viable stoichiometry indicators in those cases.The analysis was also completed by numerical predictions with CHEMKIN. The comparisons of calculations with different flame models and experimental data reveals differences in the chemiluminescence vs. equivalence ratio curves for the different combustion regimes, depending on the range of the equivalence ratio ranges and fuel compositions. This finding, which confirms previous observations for a much narrower range of fuels, could have important practical consequences for the application of the technique in real combustors.
Keywords:Chemiluminescence  Premixed flame  Syngas  Flame stoichiometry  Combustion regime
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号