首页 | 本学科首页   官方微博 | 高级检索  
     

基于非线性降维多项式逻辑斯蒂回归的图像/非图像数据的分类与识别(英文)
引用本文:Mudasser NASEER,秦世引. 基于非线性降维多项式逻辑斯蒂回归的图像/非图像数据的分类与识别(英文)[J]. 智能系统学报, 2010, 5(1): 85-93
作者姓名:Mudasser NASEER  秦世引
作者单位:北京航空航天大学自动化科学与电气工程学院,北京100037
基金项目:supported by The Major Program of Hi-tech-nology Research and Development(863) of China.(2008AA12A200); Programs of National Natural Science Foundation of China (60875072)
摘    要:在面向大规模复杂数据的模式分类和识别问题中,绝大多数的分类器都遇到了维数灾难这一棘手的问题.在进行高维数据分类之前,基于监督流形学习的非线性降维方法可提供一种有效的解决方法.利用多项式逻辑斯蒂回归方法进行分类预测,并结合基于非线性降维的非监督流形学习方法解决图像以及非图像数据的分类问题,因而形成了一种新的分类识别方法.大量的实验测试和比较分析验证了本文所提方法的优越性.

关 键 词:非线性降维  数据分类  多项式逻辑斯蒂回归  图像/非图像数据

Classification and recognition of image/non-image data based on multinomial logistic regression with nonlinear dimensionality reduction
Mudasser NASEER,QIN Shi-yin. Classification and recognition of image/non-image data based on multinomial logistic regression with nonlinear dimensionality reduction[J]. CAAL Transactions on Intelligent Systems, 2010, 5(1): 85-93
Authors:Mudasser NASEER  QIN Shi-yin
Affiliation:Mudasser NASEER,QIN Shi-yin (School of Automation Science , Electrical Engineering,Beihang University,Beijing 100037,China)
Abstract:In pattern classification and recognition oriented to massively complex data most classifiers suffer from the curse of dimensionality.Manifold learning based nonlinear dimensionality reduction (NLDR) methods provide a good preprocessing to reduce dimensionality before applying any classification method on high dimensional data.Multinomial logistic regression (MLR) can be used to predict the class membership of feature data.In this study several unsupervised NLDR methods are employed to reduce dimensions of ...
Keywords:nonlinear dimensionality reduction  data classification  multinomial logistic regression  image/non-image data  
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号