首页 | 本学科首页   官方微博 | 高级检索  
     


NEURAL-NETWORK-AIDED DESIGN OF AUTOMOBILE EXHAUST CATALYSTS
Authors:Sriram Ramani  Raul Miranda
Affiliation:  a Department of Chemical Engineering, University of Louisville, Louisville, KY
Abstract:A priori design of catalysts is not yet possible. Such task would demand unavailable scientific knowledge of the correlations among synthesis parameters and resulting solid state and surface structures, on the one hand, and among those atomic-level structural details and their catalytic functions, on the other hand. To avoid testing every possible combination, therefore, the applied chemist or chemical engineer must identify empirical correlations underlying the existing experimental data base.

The ability of artificial neural networks to identify complex correlations and to predict the result of experiments has recently generated considerable interest in various areas of science and engineering. In this paper, neural networks are used to identify composition-performance relationships in automobile exhaust catalysts.

This work employs an artificial neural network technique to do a sensitivity analysis of the conversions of pollutant gases as a function of the catalyst composition and the operating conditions. This approach converges on the optimum catalyst composition and operating condition in order to produce specified conversions of carbon monoxide, hydrocarbons and nitrogen oxides, to carbon dioxide, water and di-nitrogen respectively.
Keywords:Neural networks  automobile catalyst design  catalytic converter  pollution control  pattern development  mobile emissions
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号