首页 | 本学科首页   官方微博 | 高级检索  
     

基于训练局部字典的倒装芯片高频超声检测信号稀疏去噪方法
作者姓名:宿磊  谈世宏  吉勇  明雪飞  顾杰斐  李可
作者单位:1.江南大学机械工程学院 无锡 214122;2.中国电子科技集团公司第五十八研究所 无锡 214000
基金项目:国家自然科学基金资助项目(51705203,51775243,11902124)。
摘    要:针对高频超声检测倒装芯片缺陷的精度易受噪声影响以及高频超声信号维度高的问题,提出一种基于K-奇异值分解(K-Singular value decomposition,K-SVD)训练局部字典的高频超声信号稀疏去噪方法.采用K-SVD训练字典来减小信号与字典中原子之间的误差,并针对K-SVD不能训练高维度字典的问题,将高频超声信号分段,在低维度字典上对局部信号进行稀疏分解,从而降低训练字典和稀疏分解的计算复杂度;利用信号的全局最大后验概率(Maximum a posteriori probability,MAP)估计重构信号,消除因局部处理带来的信号跳变,实现高频超声信号的去噪.仿真和试验结果证明,提出的方法能够有效的去除高频超声信号中的噪声,与在全局字典上进行高频超声信号的稀疏分解相比,采用局部训练字典对信号进行稀疏分解在保证去噪性能的同时降低了计算复杂度.

关 键 词:高频超声检测  K-SVD局部字典  最大后验概率  倒装芯片
收稿时间:2022-05-20
本文献已被 万方数据 等数据库收录!
点击此处可从《机械工程学报》浏览原始摘要信息
点击此处可从《机械工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号