首页 | 本学科首页   官方微博 | 高级检索  
     

基于HP滤波的ARMA-ABCSVR-GABP网络流量预测
引用本文:郑晓亮,朱国森. 基于HP滤波的ARMA-ABCSVR-GABP网络流量预测[J]. 计算机应用与软件, 2022, 39(1): 94-99. DOI: 10.3969/j.issn.1000-386x.2022.01.014
作者姓名:郑晓亮  朱国森
作者单位:安徽理工大学电气与信息工程学院 安徽 淮南 232001
基金项目:国家重点研发计划项目(2018YFF0301000)。
摘    要:
针对当前网络流量无法根据流量变化的特征进行预测,且通过单一或者组合模型依然得不到较高准确率的问题,提出一种基于HP(High-Pass Fliter)滤波的流量预测模型.基于高铁站流量数据日高夜低的周期特性以及流量波动增长的长期趋势,依据HP滤波将网络流量分解成周期序列及趋势序列.利用自回归-滑动平均模型(ARMA)对...

关 键 词:HP滤波  ARMA  ABC-SVR  GABP  流量预测  组合模型

ARMA-ABCSVR-GABP NETWORK TRAFFIC PREDICTION BASED ON HP FILTER
Zheng Xiaoliang,Zhu Guosen. ARMA-ABCSVR-GABP NETWORK TRAFFIC PREDICTION BASED ON HP FILTER[J]. Computer Applications and Software, 2022, 39(1): 94-99. DOI: 10.3969/j.issn.1000-386x.2022.01.014
Authors:Zheng Xiaoliang  Zhu Guosen
Affiliation:(School of Electrical and Information Engineering,Anhui University of Science and Technology,Huainan 232001,Anhui,China)
Abstract:
In order to solve the problem that the current network traffic cannot be predicted according to the characteristics of traffic changes,and the high accuracy still cannot be obtained through a single or combined model,a traffic prediction model based on HP filtering is proposed.Based on the periodic characteristics of high daytime and low nighttime traffic data in high-speed railway station and the long-term trend of traffic fluctuation growth,the network traffic was decomposed into periodic sequence and trend sequence according to HP filtering.The advantage of ARMA in predicting stationary sequence was used to predict periodic change.The SVR optimized by ABC was used to predict trend sequence.Finally,the prediction results of the two were superimposed,and GABP was used to further improve the accuracy.The results show that the prediction method is reliable.Compared with other methods,the superiority of this method is proved.
Keywords:HP Filter  ARMA  ABC-SVR  GABPS  Flow prediction  Combined model
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号