首页 | 本学科首页   官方微博 | 高级检索  
     

基于词典分类器的细粒度机构名识别
引用本文:李磊,王路路,吐尔根·依布拉音,姜丽婷,艾山·吾买尔. 基于词典分类器的细粒度机构名识别[J]. 计算机工程与设计, 2022, 43(1): 245-251. DOI: 10.16208/j.issn1000-7024.2022.01.033
作者姓名:李磊  王路路  吐尔根·依布拉音  姜丽婷  艾山·吾买尔
作者单位:新疆大学 信息科学与工程学院,新疆 乌鲁木齐 830046
基金项目:国家重点研发子课题基金项目(2017YFB1002103);国家自然科学基金项目(61762084);新疆维吾尔自治区重点实验室开放课题基金项目(2018D04019);国家语委基金项目(ZDI135-54)。
摘    要:为提高机构名识别精度,满足关系抽取等下游任务的需求,提出分阶段细粒度命名实体识别思想.利用Bert-BiLSTM-CRF模型对机构名进行粗粒度识别,将机构名视为短文本,采用Bert-CNN对构建的机构名词典训练细粒度分类模型,获取机构名的细粒度标签.实验结果表明,提出的分阶段方法在细粒度机构名识别上F1值最佳达到了0....

关 键 词:粗粒度  命名实体识别  细粒度  机构名识别  分类器

Fine-grained organizational entity recognition based on dictionary classifier
LI Lei,WANG Lu-lu,Turgun Yibulayin,JIANG Li-ting,Aishan Wumaier. Fine-grained organizational entity recognition based on dictionary classifier[J]. Computer Engineering and Design, 2022, 43(1): 245-251. DOI: 10.16208/j.issn1000-7024.2022.01.033
Authors:LI Lei  WANG Lu-lu  Turgun Yibulayin  JIANG Li-ting  Aishan Wumaier
Affiliation:(School of Information Science and Engineering,Xinjiang University,Urumqi 830046,China)
Abstract:To improve the accuracy of organizational entity recognition and satisfy the requirements of downstream tasks such as relation extraction,an idea of fine-grained named entity recognition in stages was proposed.Bert-BiLSTM(bi-directional long short-term memory)-CRF(conditional random fields)was used to identify the coarse-grained organizational entities.Organizational entities were regarded as short texts and the fine-grained classifier with the constructed dictionary of organizational entities was trained using Bert-CNN(convolutional neural networks).The fine-grained labels of organizational entities were obtained.Experimental results show that the optimal F1 of multi-stages method proposed reaches 0.8117,which is far more than the dictionary matching method.
Keywords:coarse-grained  named entity recognition  fine-grained  organizational entity recognition  classifier
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号