首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进SSD算法对奶牛的个体识别
作者姓名:邢永鑫  孙游东  王天一
作者单位:贵州大学 大数据与信息工程学院,贵阳 550025
基金项目:贵州省科技支撑计划(SY[2017]2881)。
摘    要:为了实现养殖场环境下无接触、高精度的奶牛个体有效识别,针对SSD(single shot multibox detector)算法识别准确率不高的问题,提出一种基于浅层特征模块的改进SSD(shallow feature module SSD,SFM-SSD)算法。将原始SSD算法的主干网络由VGG16替换为MobileNetV2,以降低网络的运算量,改善检测的实时性;针对SSD网络结构的浅层特征图设计浅层特征模块,扩大浅层特征图的感受视野,提高浅层特征图对目标物体的特征提取能力;利用[K]均值聚类算法重构区域候选框,提高算法的检测精度。实验结果表明:在奶牛个体识别任务中,SFM-SSD算法的平均准确率比原始的SSD算法提升3.13个百分点。同时检测的实时性也得到改善。

关 键 词:深度学习  目标检测  反残差网络  深度可分离卷积  特征增强模块  
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号