首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental analysis for the determination of the convective heat transfer coefficient by measuring pressure drop directly during annular condensation flow of R134a in a vertical smooth tube
Authors:AS Dalkilic  I Teke
Affiliation:a Heat and Thermodynamics Division, Department of Mechanical Engineering, Yildiz Technical University, Yildiz, Besiktas, Istanbul 34349, Turkey
b Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, King Mongkut’s University of Technology Thonburi, Bangmod, Bangkok 10140, Thailand
Abstract:This study investigated the direct relationship between the measured condensation pressure drop and convective heat transfer coefficient of R134a flowing downward inside a vertical smooth copper tube having an inner diameter of 8.1 mm and a length of 500 mm during annular flow. R134a and water were used as working fluids on the tube side and annular side of a double tube heat exchanger, respectively. Condensation experiments were performed at mass fluxes of 260, 300, 340, 400, 456 and 515 kg m−2 s−1 in the high mass flux region of R134a. The condensing temperatures were around 40 and 50 °C; the heat fluxes were between 10.16 and 66.61 kW m−2. Paliwoda’s analysis, which focused mainly on the determination of the two-phase flow factor and two-phase length of evaporators and condensers, was adapted to the in-tube condensation phenomena in the test section to determine the condensation heat transfer coefficient, heat flux, two-phase length and pressure drop experimentally by means of a large number of data points obtained under various experimental conditions.
Keywords:Condensation  Two-phase pressure drop  Heat transfer coefficient  Vertical downward flow  R134a
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号