首页 | 本学科首页   官方微博 | 高级检索  
     


FPGA implementation of a run-time configurable NTT-based polynomial multiplication hardware
Affiliation:1. Department of Computer Science, TU Chemnitz, Germany;2. Department of Computer Science, The University of Chicago, USA;1. Department of Electronics and Communication Engineering, Anjalai Ammal Mahalingam Engineering College, Thiruvarur 614 403, Tamil Nadu, India;2. Department of Electronics and Communication Engineering, Rajalakshmi Engineering College, Chennai 602105, Tamil Nadu, India;3. Department of Electronics and Communication Engineering, University College of Engineering (BIT Campus), Anna University, Tiruchirappalli 620 024, Tamil Nadu, India
Abstract:Multiplication of polynomials of large degrees is the predominant operation in lattice-based cryptosystems in terms of execution time. This motivates the study of its fast and efficient implementations in hardware. Also, applications such as those using homomorphic encryption need to operate with polynomials of different parameter sets. This calls for design of configurable hardware architectures that can support multiplication of polynomials of various degrees and coefficient sizes.In this work, we present the design and an FPGA implementation of a run-time configurable and highly parallelized NTT-based polynomial multiplication architecture, which proves to be effective as an accelerator for lattice-based cryptosystems. The proposed polynomial multiplier can also be used to perform Number Theoretic Transform (NTT) and Inverse NTT (INTT) operations. It supports 6 different parameter sets, which are used in lattice-based homomorphic encryption and/or post-quantum cryptosystems. We also present a hardware/software co-design framework, which provides high-speed communication between the CPU and the FPGA connected by PCIe standard interface provided by the RIFFA driver 1]. For proof of concept, the proposed polynomial multiplier is deployed in this framework to accelerate the decryption operation of Brakerski/Fan-Vercauteren (BFV) homomorphic encryption scheme implemented in Simple Encrypted Arithmetic Library (SEAL), by the Cryptography Research Group at Microsoft Research 2]. In the proposed framework, polynomial multiplication operation in the decryption of the BFV scheme is offloaded to the accelerator in the FPGA via PCIe bus while the rest of operations in the decryption are executed in software running on an off-the-shelf desktop computer. The hardware part of the proposed framework targets Xilinx Virtex-7 FPGA device and the proposed framework achieves the speedup of almost 7 ×  in latency for the offloaded operations compared to their pure software implementations, excluding I/O overhead.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号