首页 | 本学科首页   官方微博 | 高级检索  
     


Achieving dynamic, multi-commander, multi-mission planning and execution
Authors:Eugene Santos Jr  Scott A. DeLoach  Michael T. Cox
Affiliation:(1) Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755;(2) Department of Computing and Information Sciences, Kansas State University, Manhattan, KS, 66506-2302;(3) Intelligent Distributed Computing Department, BBN Technologies, Cambridge, MA, 02138
Abstract:
The Multi-Agent Distributed Goal Satisfaction (MADGS) system facilitates distributed mission planning and execution in complex dynamic environments with a focus on distributed goal planning and satisfaction and mixed-initiative interactions with the human user. By understanding the fundamental technical challenges faced by our commanders on and off the battlefield, we can help ease the burden of decision-making. MADGS lays the foundations for retrieving, analyzing, synthesizing, and disseminating information to commanders. In this paper, we present an overview of the MADGS architecture and discuss the key components that formed our initial prototype and testbed. Eugene Santos, Jr. received the B.S. degree in mathematics and Computer science and the M.S. degree in mathematics (specializing in numerical analysis) from Youngstown State University, Youngstown, OH, in 1985 and 1986, respectively, and the Sc.M. and Ph.D. degrees in computer science from Brown University, Providence, RI, in 1988 and 1992, respectively. He is currently a Professor of Engineering at the Thayer School of Engineering, Dartmouth College, Hanover, NH, and Director of the Distributed Information and Intelligence Analysis Group (DI2AG). Previously, he was faculty at the Air Force Institute of Technology, Wright-Patterson AFB and the University of Connecticut, Storrs, CT. He has over 130 refereed technical publications and specializes in modern statistical and probabilistic methods with applications to intelligent systems, multi-agent systems, uncertain reasoning, planning and optimization, and decision science. Most recently, he has pioneered new research on user and adversarial behavioral modeling. He is an Associate Editor for the IEEE Transactions on Systems, Man, and Cybernetics: Part B and the International Journal of Image and Graphics. Scott DeLoach is currently an Associate Professor in the Department of Computing and Information Sciences at Kansas State University. His current research interests include autonomous cooperative robotics, adaptive multiagent systems, and agent-oriented software engineering. Prior to coming to Kansas State, Dr. DeLoach spent 20 years in the US Air Force, with his last assignment being as an Assistant Professor of Computer Science and Engineering at the Air Force Institute of Technology. Dr. DeLoach received his BS in Computer Engineering from Iowa State University in 1982 and his MS and PhD in Computer Engineering from the Air Force Institute of Technology in 1987 and 1996. Michael T. Cox is a senior scientist in the Intelligent Distributing Computing Department of BBN Technologies, Cambridge, MA. Previous to this position, Dr. Cox was an assistant professor in the Department of Computer Science & Engineering at Wright State University, Dayton, Ohio, where he was the director of Wright State’s Collaboration and Cognition Laboratory. He received his Ph.D. in Computer Science from the Georgia Institute of Technology, Atlanta, in 1996 and his undergraduate from the same in 1986. From 1996 to 1998, he was a postdoctoral fellow in the Computer Science Department at Carnegie Mellon University in Pittsburgh working on the PRODIGY project. His research interests include case-based reasoning, collaborative mixed-initiative planning, intelligent agents, understanding (situation assessment), introspection, and learning. More specifically, he is interested in how goals interact with and influence these broader cognitive processes. His approach to research follows both artificial intelligence and cognitive science directions.
Keywords:Mobile multiagent systems  Mixed-initiative planning  Distributed mission planning and execution  Intelligent resource allocation  Agent oriented software engineering
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号