首页 | 本学科首页   官方微博 | 高级检索  
     

改进的激光雷达回波信号去噪方法
引用本文:朱玲嬿,常建华,李红旭,徐帆,刘秉刚. 改进的激光雷达回波信号去噪方法[J]. 电子测量与仪器学报, 2017, 31(10): 1608-1613. DOI: 10.13382/j.jemi.2017.10.012
作者姓名:朱玲嬿  常建华  李红旭  徐帆  刘秉刚
作者单位:1. 南京信息工程大学江苏省大气环境与装备技术协同创新中心 南京 210044;2. 南京信息工程大学江苏省大气环境与装备技术协同创新中心 南京 210044;南京信息工程大学江苏省气象探测与信息处理重点实验室 南京 210044
基金项目:国家自然科学基金,江苏省重点研发计划,江苏高校优势学科Ⅱ期建设工程、江苏省高校品牌专业建设工程资助项目
摘    要:激光雷达回波信号的强度随距离的平方衰减,当探测距离较大时,信号将淹没在较强的噪声之中。因此,如何有效地从强背景噪声中提取出有用信号至关重要。利用经验模态分解将激光雷达回波信号进行分解,根据本征模态函数与回波信号之间的相关性,结合软阈值与粗糙惩罚技术,有效地提高了激光雷达回波信号去噪的效果。实验结果表明,当加入5 dB高斯白噪声时,该方法的输出信噪比为16.67 dB,均方根误差为1.49×10~(-11)。相比于其他去噪方法,该方法具有较高的信噪比及较低的均方根误差,从而证明了此方法的有效性。

关 键 词:激光雷达回波信号  经验模态分解  软阈值  粗糙惩罚

Improved de noising method of lidar echo signal
Zhu Lingyan,Chang Jianhu,Li Hongxu,Xu Fan and Liu Binggang. Improved de noising method of lidar echo signal[J]. Journal of Electronic Measurement and Instrument, 2017, 31(10): 1608-1613. DOI: 10.13382/j.jemi.2017.10.012
Authors:Zhu Lingyan  Chang Jianhu  Li Hongxu  Xu Fan  Liu Binggang
Affiliation:Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044,China,1. Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China;2. Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science & Technology, Nanjing 210044, China,Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044,China,Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044,China and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044,China
Abstract:The intensity of the lidar echo signal decays with the square of the distance. When the detection distance is large,the signal will be submerged in the strong noise. Therefore, it is crucial to extract valid signal efficiently from strong background noise. In this paper,the lidar echo signal is decomposed through the empirical mode decomposition. According to the correlation between the intrinsic mode function and the echo signal,the effect of lidar echo signal de-noising is improved effectively by combining with soft threshold and roughness penalty techniques. The experimental results of this method show that the output signal-to-noise ratio is 16.67 dB and the root mean square error is 1.49×10 -11when 5 dB Gaussian white noise is added. Compared with other de-noising techniques, this method achieves the higher signal-to-noise ratio and the lower root mean square error,thereby the effectiveness of this method is proved.
Keywords:lidar echo signal  empirical mode decomposition  soft threshold  roughness penalty
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电子测量与仪器学报》浏览原始摘要信息
点击此处可从《电子测量与仪器学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号