首页 | 本学科首页   官方微博 | 高级检索  
     

机器学习辅助下的五轴数控铣削刀轨优化
引用本文:王小刚,邱磊. 机器学习辅助下的五轴数控铣削刀轨优化[J]. 组合机床与自动化加工技术, 2021, 0(2): 110-113
作者姓名:王小刚  邱磊
作者单位:扬州工业职业技术学院交通工程学院;宁波工程学院机械工程学院
基金项目:宁波市自然科学基金资助(2016A610106);国家级“中高职衔接专业教师协同研修”项目资助(2018G14)。
摘    要:针对铣削加工过程中刀具挠度变形的自动补偿问题,提出了一种用于五轴数控加工的刀轨自优化方法.首先,该方法从铣削加工材料去除仿真中获得工艺条件,且将计算出的切削条件与相应的形状误差测量相关联;其次,采用基于统计学习理论的支持向量回归(Support Vector Regression,SVR)来预测所产生的形状误差,并进行...

关 键 词:数控加工  刀具路径规划  铣削  机器学习  计算机辅助制造(CAM)

Optimization of Five-axis CNC Milling Tool Paths Assisted by Machine Learning
WANG Xiao-gang,QIU Lei. Optimization of Five-axis CNC Milling Tool Paths Assisted by Machine Learning[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021, 0(2): 110-113
Authors:WANG Xiao-gang  QIU Lei
Affiliation:(School of Traffic Engineering, Yangzhou Polytechnic Institute, Yangzhou Jiangsu 225127, China;School of Mechanical Engineering, Ningbo Institute of Technology, Ningbo Zhejiang 315336, China)
Abstract:Aiming at the automatic compensation of tool deflection during milling,a self-optimizing method of tool path for 5-axis CNC machining was proposed.This method obtains the process conditions from the milling material removal simulation,and correlates the calculated cutting conditions with corresponding shape error measurements.Secondly,Support Vector Regression(SVR)based on statistical learning theory is used to predict the shape error generated,and self-optimization and tool path generation are performed.It was applied on a 5-axis CNC machine and tested at two cavities.The research results show that the method can effectively adjust the tool path,and the maximum shape deviation is reduced from 70μm to 35μm,which is 50%lower.In addition,this method has better knowledge transferability.
Keywords:CNC machining  tool path planning  milling  machine learing  CAM
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号