首页 | 本学科首页   官方微博 | 高级检索  
     


Postbuckling of functionally graded fiber reinforced composite laminated cylindrical shells, Part I: Theory and solutions
Authors:Hui-Shen Shen
Affiliation:School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
Abstract:Buckling and postbuckling behavior are presented for fiber reinforced composite (FRC) laminated cylindrical shells subjected to axial compression or a uniform external pressure in thermal environments. Two kinds of fiber reinforced composite laminated shells, namely, uniformly distributed (UD) and functionally graded (FG) reinforcements, are considered. The governing equations are based on a higher order shear deformation shell theory with von Kármán-type of kinematic non-linearity and including the extension-twist, extension-flexural and flexural-twist couplings. The thermal effects are also included, and the material properties of FRC laminated cylindrical shells are estimated through a micromechanical model and are assumed to be temperature dependent. The non-linear prebuckling deformations and the initial geometric imperfections of the shell are both taken into account. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths of FRC laminated cylindrical shells.
Keywords:Functionally graded laminates   Anisotropic laminated cylindrical shell   Temperature-dependent properties   Buckling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号