首页 | 本学科首页   官方微博 | 高级检索  
     


Frequency-Domain Design of Overcomplete Rational-Dilation Wavelet Transforms
Authors:Bayram   I. Selesnick   I.W.
Affiliation:Dept. of Electr. & Comput. Eng., Polytech. Inst. of New York Univ., Brooklyn, NY, USA;
Abstract:The dyadic wavelet transform is an effective tool for processing piecewise smooth signals; however, its poor frequency resolution (its low Q-factor) limits its effectiveness for processing oscillatory signals like speech, EEG, and vibration measurements, etc. This paper develops a more flexible family of wavelet transforms for which the frequency resolution can be varied. The new wavelet transform can attain higher Q-factors (desirable for processing oscillatory signals) or the same low Q-factor of the dyadic wavelet transform. The new wavelet transform is modestly overcomplete and based on rational dilations. Like the dyadic wavelet transform, it is an easily invertible 'constant-Q' discrete transform implemented using iterated filter banks and can likewise be associated with a wavelet frame for L2(R). The wavelet can be made to resemble a Gabor function and can hence have good concentration in the time-frequency plane. The construction of the new wavelet transform depends on the judicious use of both the transform's redundancy and the flexibility allowed by frequency-domain filter design.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号