首页 | 本学科首页   官方微博 | 高级检索  
     


Spatio-temporal structure of human motion primitives and its application to motion prediction
Affiliation:1. Yonsei University, Republic of Korea;2. Korea Institute of Construction Technology, Republic of Korea
Abstract:This paper proposes a novel approach to structuring behavioral knowledge based on symbolization of human whole body motions, hierarchical classification of the motions, and extraction of the causality among the motions. The motion patterns are encoded into parameters of corresponding Hidden Markov Models (HMMs), where each HMM abstracts the dynamics of motion pattern, and hereafter is referred to as “motion symbol”. The motion symbols allow motion recognition and synthesis. The motion symbols are organized into a hierarchical tree structure representing the property of spatial similarity among the motion patterns, and this tree is referred to as “motion symbol tree”. Seamless motion is segmented into a sequence of motion primitives, each of which is classified as a motion symbol based on the motion symbol tree. The seamless motion results in a sequence of the motion symbols, which is stochastically represented as transitions between the motion symbols by an N-gram model. The motion symbol N-gram model is referred to as “motion symbol graph”. The motion symbol graph extracts the temporal causality among the human behaviors. The integration of the motion symbol tree and the motion symbol graph makes it possible to recognize motion patterns fast and predict human behavior during observation. The experiments on a motion dataset of radio calisthenics and on a large motion dataset provided by CMU motion database validate the proposed framework.
Keywords:Motion primitive  Stochastic modeling  Motion prediction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号