基于组合模型的农产品物价预测算法 |
| |
作者姓名: | 苏照军 郭锐锋 高岑 王美吉 李冬梅 |
| |
作者单位: | 中国科学院大学 计算机控制与工程学院, 北京 100049;中国科学院 沈阳计算技术研究所, 沈阳 110168,中国科学院 沈阳计算技术研究所, 沈阳 110168,中国科学院 沈阳计算技术研究所, 沈阳 110168,中国科学院 沈阳计算技术研究所, 沈阳 110168,中国科学院 沈阳计算技术研究所, 沈阳 110168 |
| |
摘 要: | 当今时代,科学技术高速发展,涌现出一批新技术,数据挖掘、机器学习等新科学领域被深入研究,众多智能算法逐渐出现,同时被应用到了不同的领域中.本文构建了一种基于BP (Back Propagation)神经网络和SVR (Support Vector Regression)支持向量回归机的组合模型.依托于农产品价格数据进行实例验证分析,结果表明相对于单一的预测模型,BP-SVR-BP组合模型在预测精度上有了很大的提升,拟合效果更加逼近真实数据曲线,能够客观真实的反应农产品物价变化规律.
|
关 键 词: | 组合模型 BP神经网络 物价预测 SVR预测 农产品 |
收稿时间: | 2018-12-04 |
修稿时间: | 2018-12-26 |
|
| 点击此处可从《计算机系统应用》浏览原始摘要信息 |
|
点击此处可从《计算机系统应用》下载免费的PDF全文 |
|