摘 要: | 目的为了改进传统遗传算法在码垛机器人路径规划中可能出现的局部陷阱和过早收敛问题,以及机器人的能耗和路线平滑性问题,提出一种改进的遗传算法机器人路径规划方法。方法针对传统遗传算法存在的问题,分别对种群初始化、适应度函数、选择算子、交叉算子、变异算子的算法和方式进行调整和改进,对优秀算法进行融合。针对基本遗传算法主要着重于路径最短,从而忽视了机器人的能耗及路径平滑性等问题,设计一种综合考虑距离和转弯次数控制的适应度函数,最后将改进的算法应用于码垛机器人的路径规划中。结果仿真结果表明,相较于基本遗传算法,提出的算法搜索到的路径质量更高,不仅距离更短,同时转弯次数远远小于其他算法,路径更为平滑,验证了该算法的有效性。结论基于该算法的码垛机器人路径在兼顾距离最优的同时,路线更加平滑。由于减少了转向次数,机器人的能耗更低,同时仿真结果表明,该算法的实时性也较好。
|