首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of Bacillus subtilis cell walls and EDTA on calcite dissolution rates and crystal surface features
Authors:Friis A K  Davis T A  Figueira M M  Paquette J  Mucci A
Affiliation:Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal, Quebec, Canada H3A 2A7.
Abstract:This study investigates the influence of EDTA and the Gram-positive cell walls of Bacillus subtilis on the dissolution rates and development of morphological features on the calcite 1014] surface. The calcite dissolution rates are compared at equivalent saturation indicies (SI) and relative to its dissolution behavior in distilled water (DW). Results indicate that the presence of metabolically inactive B. subtilis does not affect the dissolution rates significantly. Apparent increases in dissolution rates in the presence of the dead bacterial cells can be accounted for by a decrease of the saturation state of the solution with respect to calcite resulting from bonding of dissolved Ca2+ by functional groups on the cell walls. In contrast, the addition of EDTA to the experimental solutions results in a distinct increase in dissolution rates relative to those measured in DW and the bacterial cell suspensions. These results are partly explained by the 6.5-8 orders of magnitude greater stability of the Ca-EDTA complex relative to the Ca-B. subtilis complexes as well as its free diffusion to and direct attack of the calcite surface. Atomic force microscopy images of the 1014] surface of calcite crystals exposed to our experimental solutions reveal the development of dissolution pits with different morphologies according to the nature and concentration of the ligand. Highly anisotropic dissolution pits develop in the early stages of the dissolution reaction at low B. subtilis concentrations (0.004 mM functional group sites) and in DW. In contrast, at high functional group concentrations (4.0 mM EDTA or equivalent B. subtilis functional group sites), dissolution pits are more isotropic. These results suggest that the mechanism of calcite dissolution is modified by the presence of high concentrations of organic ligands. Since all the pits that developed on the calcite surfaces display some degree of anisotropy and dissolution rates are strongly SI dependent, the rate-limiting step is most likely a surface reaction for all systems investigated in this study. Results of this study emphasize the importance of solution chemistry and speciation in determining calcite reaction rates and give a more accurate and thermodynamically sound representation of dead bacterial cell wall-mineral interactions. In studies of natural aquatic systems, the presence of organic ligands is most often ignored in speciation calculations. This study clearly demonstrates that this oversight may lead to an overestimation of the saturation state of the solutions with respect to calcite and thermodynamic inconsistencies.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号