首页 | 本学科首页   官方微博 | 高级检索  
     


Encapsulation of manganese oxides nanocrystals in electrospun carbon nanofibers as free-standing electrode for supercapacitors
Affiliation:1. School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, PR China;2. Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong;1. Hunan Key Laboratory of Micro–Nano Energy Materials and Devices, Xiangtan University, Hunan 411105, PR China;2. Laboratory for Quantum Engineering Micro–Nano Energy Technology, School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, PR China;1. Department of Materials Science and Engineering, National Cheng Kung University, Tainan City 70101, Taiwan;2. Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan City 70101, Taiwan;3. Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan City 70101, Taiwan
Abstract:Flexible composites with manganese oxides (MnOx) nanocrystals encapsulated in electropun carbon nanofibers were successfully fabricated via a simple and practical combination of electrospinning and carbonization process. The as-formed MnOx/carbon nanofibers composites have a rough surface with MnOx nanoparticles well embedded in the carbon nanofibers backbones. When used as electrodes for supercapacitor, the resulting MnOx/carbon nanofiber composites exhibit good electrochemical performance with a specific capacitance of 174.8 F g?1 at 2 mV s?1 in 0.5 M Na2SO4 electrolyte, a good rate capability at high current density and long-term cycling stability. It is expected that such freestanding composites could be promising electrodes for high-performance supercapacitors.
Keywords:Electrodes  Manganese oxides  Electropun  Carbon nanofibers  Supercapacitors
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号