首页 | 本学科首页   官方微博 | 高级检索  
     


Design consideration of photocatalytic oxidation reactors using TiO2-coated foam nickels for degrading indoor gaseous formaldehyde
Authors:Liping Yang  Zhenyan Liu  Jianwei Shi  Hai Hu  Wenfeng Shangguan
Affiliation:

aResearch Center for Combustion and Environment Technology, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China

Abstract:In the design process of the photocatalytic oxidation (PCO) reactor using TiO2-coated foam nickels, the optimum of catalyst film thickness, light intensity and flow velocity were considered. A model was developed to study the effect of catalyst film thickness on photocatalytic degradation of formaldehyde by a TiO2-coated foam nickel at continuous flow mode. In this model, external mass transfer and internal molecule diffusion-reaction were considered. A first-order kinetics equation was used to account for the photocatalytic reaction. Two exponential equations were employed to describe the distribution of light intensities in foam nickels and catalyst films, respectively. Validated with experimental data, the model can be used to predict the optimal thickness of catalyst films. A method for determining appropriate light intensities was proposed and discussed. The appropriate light intensity can be obtained by giving a margin, regarded as an excess coefficient, to the light intensity calculated based on the assumption of complete use of excited electron–hole pairs. The excess coefficient needs to be determined experimentally. In addition, the optimal flow velocity of PCO reactors could be consistent with the required one by changing the windward area of foam nickels. Based on the theoretical analyses, a novel PCO reactor containing 15 parallel-connected cells was designed. Each reaction cell was composed of an UV lamp and a TiO2-coated tubular foam nickel. The performance of the reactor was tested by degrading gaseous formaldehyde at an indoor concentration level. The results showed that the reactor had low pressure loss and good degradation capability.
Keywords:Photocatalysis  Reactor design  Air purification  Flow velocity  Catalyst film thickness  Light intensity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号