首页 | 本学科首页   官方微博 | 高级检索  
     

基于带阈值模块一维残差网络的刀具磨损监测方法
作者姓名:郭保苏  韩天杰  张宇  吴凤和
作者单位:燕山大学机械工程学院,河北 秦皇岛 066004
基金项目:国家自然科学基金(52175488);;河北省高等学校科学研究项目青年拔尖人才项目(BJ2021045);;河北省科技计划项目(20310401D);
摘    要:基于带阈值模块一维残差网络和双向长短期记忆网络,设计了刀具磨损监测模型和预测模型。将传感器信号经过小波分解后输入监测模型中,阈值模块自动选择阈值对信号降噪,残差模块提取信号特征,然后输出刀具磨损监测值,再将其输入到预测模型中获得刀具磨损预测值。实验证明:该监测模型与不带阈值模块的一维残差网络模型和卷积神经网络模型进行了对比,监测准确率分别提高了0.327%和1.697%;预测模型的预测效果较好,绝对误差仅为0.023。

关 键 词:计量学  刀具磨损  残差网络  阈值模块  长短期记忆网络  
收稿时间:2021-01-14
本文献已被 万方数据 等数据库收录!
点击此处可从《计量学报》浏览原始摘要信息
点击此处可从《计量学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号