首页 | 本学科首页   官方微博 | 高级检索  
     

12Cr13马氏体不锈钢热处理工艺参数的ANN-GA模型
引用本文:丁贝,于军辉,李颜. 12Cr13马氏体不锈钢热处理工艺参数的ANN-GA模型[J]. 金属制品, 2013, 39(3): 39-43
作者姓名:丁贝  于军辉  李颜
作者单位:1. 海军装备部,陕西宝鸡,721006
2. 国核宝钛锆业股份公司,陕西宝鸡,721013
3. 中国核电工程有限公司深圳设计院,广东深圳,518000
摘    要:12Cr13马氏体不锈钢淬火和回火工艺参数对其力学性能影响较大,测定其热处理工艺对力学性能的影响周期长且成本高。在神经网络与遗传算法基础上建立12Cr13马氏体不锈钢热处理工艺参数与力学性能的预测模型。模型输入单元为淬火温度、淬火保温时间、冷却方式及回火温度,输出单元为抗拉强度、屈服强度、延伸率及断面收缩率。采用Traincgf算法的神经网络收敛速度快,误差小。隐含层节点单元为6,动量因子为0.6,学习速率为0.2时,网络测试的均方误差值均最小。经过网络测试的抗拉强度、屈服强度、延伸率及断面收缩率的最大相对误差绝对值分别为3.24%,2.48%,9.45%和8.82%。12Cr13马氏体不锈钢的预测模型具有结构简单,拟合精度高的特点。可利用12Cr13马氏体不锈钢热处理工艺参数预测其力学性能,为工艺优化设计提供参考。

关 键 词:12Cr13不锈钢  热处理工艺  抗拉强度  延伸率  断面收缩率  人工神经网络  遗传算法

ANN-GA model of 12Cr13 martensitic stainless steel heat treatment technological parameter
DING Bei , YU Jun-hui , LI Yan. ANN-GA model of 12Cr13 martensitic stainless steel heat treatment technological parameter[J]. Steel Wire Products, 2013, 39(3): 39-43
Authors:DING Bei    YU Jun-hui    LI Yan
Affiliation:1.Department of Navy Armament,Baoji 721006,China;2.State Nuclear BaoTi Zirconium Industry Company,Baoji 721013,China; 3.China Nuclear Power Engineering Company Shenzhen Design Institute,Shenzhen 518000,China)
Abstract:The quenching and tempering technological parameters of 12Cr13 martensitic stainless steel have great influence on its mechanical properties,the period is long and cost is high to determine the influence of its heat treatment process on mechanical properties.The predictive model of 12Cr13 martensitic stainless steel heat treatment technological parameter and mechanical properties was established on the basis of artificial neural network(ANN) and genetic algorithm(GA).The model input unit has quenching temperature,holding time,cooling way and tempering temperature,output unit has tensile strength,yield strength,elongation rate and reduction of area.The neural network adopting Traincgf algorithm convergence speed is fast and error is small.When concealed layer node unit is 6,momentum factor is 0.6,learning rate is 0.2,the mean square error value of network measurement is all minimum.The maximum relative error absolute value of tensile strength,yield strength,elongation rate and reduction of area tested with network is 3.24%,2.48%,9.45% and 8.82% respectively.The predictive model of 12Cr13 martensitic stainless steel has the characteristic of simple structure and high fitting precision.The mechanical properties of 12Cr13 martensitic stainless steel can be predicted with its heat treatment technological parameters,it supplies references for designing process optimization.
Keywords:12Cr13 stainless steel  heat treatment technological  tensile strength  elongation rate  artificial neural network  genetic algorithm
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号