摘 要: | 文章提出了一种基于小波核极限学习机(Wavelet Kernel Extreme Learning Machine,WK-ELM)的人脸识别算法。首先,使用2D盖博小波变换对人脸图片进行初步的人脸特征提取。为了从所有提取的特征中选择出与人脸识别相关的、必要的特征,使用主成分分析法(Principal Component Analysis,PCA)对经过初步处理后的图像再进行进一步处理,有效地降低了特征维数。然后使用小波核极限学习机对提取到的图像进行分类。实验证明,小波核极限学习机不仅识别性能高,而且训练速度也优于其他算法。
|