首页 | 本学科首页   官方微博 | 高级检索  
     


Kernel PCA for novelty detection
Authors:Heiko Hoffmann [Author Vitae]
Affiliation:Max Planck Institute for Human Cognitive and Brain Sciences, Amalienstr. 33, 80799 Munich, Germany
Abstract:
Kernel principal component analysis (kernel PCA) is a non-linear extension of PCA. This study introduces and investigates the use of kernel PCA for novelty detection. Training data are mapped into an infinite-dimensional feature space. In this space, kernel PCA extracts the principal components of the data distribution. The squared distance to the corresponding principal subspace is the measure for novelty. This new method demonstrated a competitive performance on two-dimensional synthetic distributions and on two real-world data sets: handwritten digits and breast-cancer cytology.
Keywords:Kernel method   Novelty detection   PCA   Handwritten digit   Breast cancer
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号