首页 | 本学科首页   官方微博 | 高级检索  
     


Enhancing network intrusion detection classifiers using supervised adversarial training
Authors:Yin  Chuanlong  Zhu  Yuefei  Liu  Shengli  Fei  Jinlong  Zhang  Hetong
Affiliation:1.State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou, 450001, China
;
Abstract:

The performance of classifiers has a direct impact on the effectiveness of intrusion detection system. Thus, most researchers aim to improve the detection performance of classifiers. However, classifiers can only get limited useful information from the limited number of labeled training samples, which usually affects the generalization of classifiers. In order to enhance the network intrusion detection classifiers, we resort to adversarial training, and a novel supervised learning framework using generative adversarial network for improving the performance of the classifier is proposed in this paper. The generative model in our framework is utilized to continuously generate other complementary labeled samples for adversarial training and assist the classifier for classification, while the classifier in our framework is used to identify different categories. Meanwhile, the loss function is deduced again, and several empirical training strategies are proposed to improve the stabilization of the supervised learning framework. Experimental results prove that the classifier via adversarial training improves the performance indicators of intrusion detection. The proposed framework provides a feasible method to enhance the performance and generalization of the classifier.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号