首页 | 本学科首页   官方微博 | 高级检索  
     

基于集成学习方法的燃气调压器故障类型智能判断研究
作者姓名:彭小宝  杨铭添  郑燕群  赵洁
作者单位:上海世昕软件股份有限公司
摘    要:
调压器作为燃气输配系统中重要的设备,其状态检测及故障诊断尤为重要。本研究基于某燃气公司的调压器预警台账统计数据,收集了2020年至2022年间的9 125条报警数据,引入集成学习的方法,结合调压器进出口压力数据、压力数据特征等变量,基于3种集成学习方法:随机森林、XGBoost(eXtreme Gradient Boosting)、LightGBM(Light Gradient Boosting Machine)构建了调压器故障类型智能判断模型,利用实际检测数据从进出口、故障类型等方面对3种模型分别进行了评价,根据评价结果得出以下结论:针对进口压力报警,LightGBM智能判断模型的表现最好,精度为97%;针对出口压力报警,XGBoost智能判断模型的表现最好,精度为92%,均达到了较高的准确率。

关 键 词:燃气调压器故障类型  集成学习  智能判断
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号