首页 | 本学科首页   官方微博 | 高级检索  
     


Post-buckling behavior of thin steel plates using computational models
Affiliation:1. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, 100044, China;2. KTH Royal Institute of Technology, Department of Aeronautical and Vehicle Engineering, Rail Vehicles, Teknikringen 8, Stockholm SE-10044, Sweden
Abstract:Thin plates loaded in plane will buckle at very small loads, and due to unavoidable out-of-plane imperfections, the theoretical buckling load cannot be observed experimentally. If the plate is adequately supported along its boundaries, it will be able to carry a much higher load than the theoretical buckling load.Computational models can be used to study the post buckling behaviour of thin plate structures up to failure. Failure of such structures is usually due to large out-of-plane deflections, yielding, and rupture. Therefore, the computational model should include the effects of geometric and material nonlinearities. In this paper, the nonlinear finite element analysis program NONSAP and ANSR-III were modified and used in the analysis. Since these programs did not include the suitable elements and material properties to conduct the subject study, new elements and new material properties were added to the programs. In particular, a thin shell element was added and the solution routines were modified to improve its accuracy and efficiency.The modified programs were used on a Super Computer to calculate the post buckling strength of stiffened and unstiffened plates subjected to uniaxial compression, and plates subjected to in plane bending or shear. Crippling of plates subjected to in-plane or eccentric edge compressive loads was also examined. The results from the computational models were compared with test results and reasonable agreements were obtained. A computational model was developed for a multi-story thin steel plate shear wall subjected to cyclic loading and the results from the model were compared with experimental results, and again agreement was achieved.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号