Right to left differences in the ankle joint complex range of motion |
| |
Authors: | DJ Stefanyshyn JR Engsberg |
| |
Affiliation: | Department of Anatomy, Physiology and Radiology, College of Veterinary Medicine, North Carolina State University, Raleigh 27606, USA. |
| |
Abstract: | In most eukaryotic cells, synthesis of the iron storage protein, ferritin is regulated by iron levels and redox conditions. Proper iron storage is important to protect against damaging iron-catalysed free radical reactions. Although iron-catalysed reactions are believed to contribute to oxidative damage and cataractogenesis, little is known about iron storage in the lens. In this study, ferritin concentration was measured in cultured canine lens epithelial cells. Baseline ferritin concentration ranged from 76-163 ng (mg protein)-1; cells cultured in low-iron media had significantly lower ferritin levels than cells cultured in iron-supplemented media. Addition of a large excess of iron as hemin resulted in an eight-fold increase in ferritin concentration. The iron chelator, Desferal, significantly decreased ferritin concentration. The reducing agent dithiothreitol decreased the hemin-induced increase in ferritin levels, but not baseline levels. In contrast, ascorbic acid induced a large increase in ferritin content. Other studies have shown that induction of ferritin synthesis can protect against oxidative damage. Regulation of ferritin levels may represent a mechanism by which the lens epithelium is protected from oxidative damage. In vivo, epithelial cells are normally exposed to much lower iron concentrations than the cultured lens epithelial cells in this study. However, in pathological circumstances, the iron content and redox state of the aqueous humor is dramatically altered and may affect the steady state levels of ferritin within the lens. This remains to be determined. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|