首页 | 本学科首页   官方微博 | 高级检索  
     

基于灰色理论的铁水预处理终点磷含量神经网络预测模型
引用本文:张慧宁,徐安军,崔健,贺东风,田乃媛. 基于灰色理论的铁水预处理终点磷含量神经网络预测模型[J]. 钢铁, 2012, 47(3): 38-41
作者姓名:张慧宁  徐安军  崔健  贺东风  田乃媛
作者单位:1. 北京科技大学冶金与生态工程学院, 北京 100083 2. 宁波钢铁股份有限公司, 浙江 宁波 315000
基金项目:国家“十一五”科技支撑计划资助项目
摘    要: 在传统BP神经网络预测模型的基础上,依据灰色理论中的灰色关联度,提出了输出变量各个影响因素的灰色关联度权值,首次建立基于灰色理论的神经网络预测模型,并依据国内某钢厂300组实际生产数据进行仿真试验。试验结果表明:误差绝对值小于5%的炉数有39炉,占总炉数的65.00%;误差绝对值小于10%的炉数共有58炉,占到96.67%。与传统BP神经网络相比,基于灰色理论的神经网络模型的预测精度提高近12.5%,说明基于灰色理论的铁水预处理终点磷含量神经网络预测模型能更精确地反映现场实际水平。

关 键 词:灰色理论   关联度   终点磷含量   神经网络模型  
收稿时间:2011-05-23

Neural Network Prediction Model for End Point Phosphorus Content Based on Grey Theory in Hot Metal Pretreatment
ZHANG Hui-ning,XU An-jun,CUI Jian,HE Dong-feng,TIAN Nai-yuan. Neural Network Prediction Model for End Point Phosphorus Content Based on Grey Theory in Hot Metal Pretreatment[J]. Iron & Steel, 2012, 47(3): 38-41
Authors:ZHANG Hui-ning  XU An-jun  CUI Jian  HE Dong-feng  TIAN Nai-yuan
Affiliation:1. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China 2.Ningbo Iron and Steel Co., Ltd., Ningbo 315000, Zhejiang, China
Abstract:On the basis of optimizing the traditional BP neural network model,a neural network prediction model combined with grey theory was developed by laying correlative degree weights to all input factors which had effects on the output variable.And then simulation experiments of model newly established were conducted based on data from a domestic steel plant.The results show that hit rate arrives at 65.00% when the error modulus is less than 5.00%,and the value is 96.67% when less than 10.00%.Comparing to the traditional neural network prediction model,the accuracy almost increases by 12.50%,Thus,the prediction of end point phosphorus content fits the real perfectly,which accounts for that neural network model for terminative phosphorus content based on grey theory can reflect accurately the practice in hot metal pretreatment.
Keywords:grey theory  correlation degree  terminative phosphorus content  neural network model
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《钢铁》浏览原始摘要信息
点击此处可从《钢铁》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号