首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling methyl methacrylate free radical polymerization in nanoporous confinement
Authors:Fatema Begum
Affiliation:Department of Chemical Engineering, Texas Tech University, Box 43121, Lubbock, TX 79409-3121, USA
Abstract:Nanoconfinement of methyl methacrylate free radical polymerization is known to impact the molecular weight and molecular weight distribution of the polymer produced, with results in the literature generally indicating an increase in molecular weight and a concomitant decrease in polydispersity index. In the present work, the mathematical model described by Verros et al. (2005) for free radical bulk polymerization of methyl methacrylate is extended to account for polymerization in nanopores. The model of Verros et al. (2005) incorporates diffusion effects and is capable of describing the conversion and the number- and weight-average molecular weights of the resulting poly(methyl methacrylate) as a function of polymerization time and process conditions. The model is extended by incorporating the effect of nanoconfinement on diffusivity using the scaling reported in the literature. The calculations indicate that nanoconfinement will lead to higher molecular weights and lower polydispersity, and the gel effect will occur earlier. The results are compared to experimental work and implications discussed.
Keywords:PMMA   Free radical polymerization   Nanoconfinement
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号