Abstract: | A novel transdermal delivery of sumatriptan (ST) was attempted by application of dissolving microneedle (DM) technology. Dextran DM (d-DM) and hyaluronate DM (h-DM) were prepared by adding ST solution to dextran solution or hyaluronic acid solution. One DM chip, 1.0?×?1.0?cm, contains 100 microneedle arrays in a 10?×?10 matrix. The mean lengths of DMs were 496.6?±?2.9 μm for h-DM and 494.5?±?1.3 μm for d-DM. The diameters of the array basement were 295.9?±?3.9 μm (d-DM) and 291.7?±?3.0 μm (h-DM), where ST contents were 31.6?±?4.5?μg and 24.1?±?0.9?μg. These results suggest that ST was stable in h-DM. Each DM was administered to rat abdominal skin. The maximum plasma ST concentrations, Cmax, and the areas under the plasma ST concentration versus time curves (AUC) were 44.6?±?4.9?ng/ml and 24.6?±?3.9?ng · h/ml for h-DM and 38.4?±?2.7?ng/ml and 14.1?±?1.5?ng · h/ml for d-DM. The bioavailabilities of ST from DMs were calculated as 100.7?±?18.8% for h-DM and 93.6?±?10.2% for d-DM. Good dose dependency was observed on Cmax and AUC. The stability study of ST in DM was performed for 3 months under four different conditions, ?80, 4, 23, and 50°C. At the end of incubation period, they were, respectively, 100.0?±?0.3%, 97.8?±?0.2%, 98.8?±?0.2%, and 100.7?±?0.1%. These suggest the usefulness of DM as a noninvaisive transdermal delivery system of ST to migraine therapy. |