首页 | 本学科首页   官方微博 | 高级检索  
     


Statistical inference for general-order-statistics andnonhomogeneous-Poisson-process software reliability models
Authors:Joe   H.
Affiliation:Univ. Coll., London;
Abstract:
There are many software reliability models that are based on the times of occurrences of errors in the debugging of software. It is shown that it is possible to do asymptotic likelihood inference for software reliability models based on order statistics or nonhomogeneous Poisson processes, with asymptotic confidence levels for interval estimates of parameters. In particular, interval estimates from these models are obtained for the conditional failure rate of the software, given the data from the debugging process. The data can be grouped or ungrouped. For someone making a decision about when to market software, the conditional failure rate is an important parameter. The use of interval estimates is demonstrated for two data sets that have appeared in the literature
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号