首页 | 本学科首页   官方微博 | 高级检索  
     

在协同过滤中结合奇异值分解与最近邻方法
引用本文:孙小华,陈洪,孔繁胜. 在协同过滤中结合奇异值分解与最近邻方法[J]. 计算机应用研究, 2006, 23(9): 206-208
作者姓名:孙小华  陈洪  孔繁胜
作者单位:浙江大学,人工智能研究所,浙江,杭州,310027;杭州贝尔通信设备有限公司,浙江,杭州,310007
摘    要:协同过滤是一种减小信息过载的常用方法,但是它有三方面的限制,即准确性、数据稀疏性和可扩展性。提出一种新的协同过滤算法来解决数据稀疏性的问题,利用奇异值分解法的结果来进行邻居选择,然后采用最近邻方法来得到未打分项目的预测值。在EachMovie 数据库集上的试验结果表明该算法在数据稀疏时算法的准确性超过普通的Pearson算法和奇异值分解算法。

关 键 词:奇异值分解  协同过滤  推荐系统
文章编号:1001-3695(2006)09-0206-03
收稿时间:2005-07-04
修稿时间:2005-08-30

Combining Singular Value Decomposition and Neighbor based Method in Collaborative Filtering
SUN Xiao hu,CHEN Hong,KONG Fan sheng. Combining Singular Value Decomposition and Neighbor based Method in Collaborative Filtering[J]. Application Research of Computers, 2006, 23(9): 206-208
Authors:SUN Xiao hu  CHEN Hong  KONG Fan sheng
Affiliation:(1.Institute of Artificial Intelligence, Zhejiang University, Hangzhou Zhejiang 310027, China;2.Hangzhou Bell Telecommunication System Co., Ltd., Hangzhou Zhejiang 310007, China)
Abstract:Collaborative filtering is becoming a popular technique for reducing information overload.However,it has three major limitations,accuracy,data sparsity and scalability.We propose a new collaborative filtering algorithm to solve the problem of data sparsity.We utilize the results of singular value decomposition for neighbors selecting,then use the neighborhood-based method to produce the prediction of unrated items.Our experimental results on EachMovie dataset show that the algorithm outperforms the conventional neighborhood-based method and SVD method when the available ratings are sparse.
Keywords:Singular Value Decomposition(SVD)  Collaborative Filtering  Recommender Systems
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号