首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊聚类和粗糙集的电力系统短期负荷预测
引用本文:张春雷. 基于模糊聚类和粗糙集的电力系统短期负荷预测[J]. 华北电力大学学报(自然科学版), 2008, 35(3): 38-43
作者姓名:张春雷
作者单位:河北建投能源投资股份有限公司,河北,石家庄,050000
摘    要:电力系统短期负荷预测中存在大量的不确定因素直接影响到负荷预测结果的准确性,而粗糙集理论能有效地分析和处理各种不精确、不一致、不完整的信息,并从中发现隐含的知识,揭示潜在的规律。将模糊聚类分析和粗糙集理论结合在一起对电力系统短期负荷进行预测。首先通过模糊聚类分析,根据气温、相对湿度以及日类型等影响负荷的因素将负荷历史数据分成若干类,然后应用粗糙集理论分别建立相应的负荷预测模型。采用某电网提供的数据进行负荷预测,结果分析表明该方法有很高的预测精度,从而说明了基于模糊聚类和粗糙集理论的电力系统短期负荷预测方法的优越性。

关 键 词:模糊聚类分析  粗糙集理论  短期负荷预测  电力系统
文章编号:1007-2691(2008)03-0038-06
修稿时间:2007-11-20

Power system short-term load forecasting based on fuzzy clustering analysis and rough sets
ZHANG Chun-lei. Power system short-term load forecasting based on fuzzy clustering analysis and rough sets[J]. Journal of North China Electric Power University, 2008, 35(3): 38-43
Authors:ZHANG Chun-lei
Abstract:In order to get more accuracy load forecasting result in electric power system which exits large uncertain information,rough set theory is proposed to deal with inaccuracy and uncertain information that affects the accuracy of load forecasting result in this paper.Implied knowledge and rules can also be discovery and excavated by using rough set.A short-term electrical load forecasting model based on fuzzy clustering and rough set is presented in this paper.At first,by means of fuzzy clustering the historical data is divided into several groups according to similarity daily characters,for example,temperature,humidity and day type etc.Then the corresponding load forecasting model based on rough set is built.The satisfactory accurate result can be gotten by applying this model in the practical electricity load forecasting,which shows the superiority of combining fuzzy clustering and rough set for short-time electrical load forecasting.
Keywords:fuzzy clustering analysis  rough set theory  short-term load forecasting  electric power system
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号