Wide bandgap semiconductor transistors for microwave poweramplifiers |
| |
Authors: | Trew R.J. |
| |
Affiliation: | US Dept. of Defense, Washington, DC; |
| |
Abstract: | Explores the RF power performance of microwave amplifiers fabricated from wide bandgap semiconductor transistors and demonstrates that microwave power amplifiers fabricated from 4H-SiC and AlGaN/GaN transistors offer superior RF power performance, particularly at elevated temperatures. Theoretical models predict room temperature RF output power on the order of 4-6 W/mm and 10-12 W/mm, with power-added efficiency (PAE) approaching the ideal values for class A and B operation, available from 4H-SiC MESFETs and AlGaN/GaN HFETs, respectively. All calculations were thoroughly calibrated against dc and RF experimental data. The simulations indicate operation at elevated temperature at least up to 5000°C is possible. The RF output power capability of these devices compares very favorably with the 1 W/mm available from GaAs MESFETs. The wide bandgap semiconductor devices will find application in power amplifiers for base station transmitters for wireless telephone systems, HDTV transmitters, power modules for phased-array radars, and other applications. The devices are particularly attractive for applications that require operation at elevated temperature |
| |
Keywords: | |
|
|