首页 | 本学科首页   官方微博 | 高级检索  
     

混合语音识别系统的一种新的简化神经网络结构
引用本文:邓伟. 混合语音识别系统的一种新的简化神经网络结构[J]. 数据采集与处理, 2002, 17(1): 25-28
作者姓名:邓伟
作者单位:苏州大学计算机工程系,苏州,215006
基金项目:江苏高校省级重点实验室开放基金资助项目
摘    要:研究适用于隐马尔可夫模型(HMM)结合多层感知器(MLP)的小词汇量混合语音识别系统的一种简化神经网络结构。利用小词汇量混合语音识别系统中的HMM状态所形成的规则的二维阵列,对状态观测概率进行分解。基于这种利用HMM的二维结构特性的方法,实现了用一种由多个简单的MLP所组成的简化神经网络结构来估计状态观测概率。理论分析和语音识别实验的结果都表明,这种简化神经网络结构在性能上优于Franco等人提出的简化神经网络结构。

关 键 词:语音识别  隐马尔可夫模型  多层感知器  神经网络结构
文章编号:1004-9037(2002)01-0025-04
修稿时间:2000-12-18

A Simplified Neural Network Architecture for a Hybrid Speech Recognition System
Deng Wei. A Simplified Neural Network Architecture for a Hybrid Speech Recognition System[J]. Journal of Data Acquisition & Processing, 2002, 17(1): 25-28
Authors:Deng Wei
Abstract:A simplified neural network architecture is presented. It is applicable to any small vocabulary hybrid speech recognition system that combines hidden Markov model (HMM) with multi-layer perceptron (MLP). By using the regular two-dimensional array of HMM states in a hybrid speech recognition system with small vocabulary size, the factorization of observation probabilities is performed. Based on this approach, by using the property of the two-dimensional structure possessed by the HMM, a simplified neural network architecture consisting of multiple simple MLPs, employed to estimate observation probabilities is achieved. The theoretical analysis and the results of the speech recognition experiments show that the simplified neural network architecture is superior to that of Franco, et al .
Keywords:speech recognition  hidden Markov model  multi-layer perceptron  neural network architecture  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号