首页 | 本学科首页   官方微博 | 高级检索  
     

基于邻居决策的协同过滤推荐算法
引用本文:李春,朱珍民,高晓芳,陈援非. 基于邻居决策的协同过滤推荐算法[J]. 计算机工程, 2010, 36(13): 34-36,39
作者姓名:李春  朱珍民  高晓芳  陈援非
作者单位:1. 中国科学院计算技术研究所,北京100080;湘潭大学信息工程学院,湘潭411105
2. 中国科学院计算技术研究所,北京,100080
3. 中国科学院计算技术研究所,北京100080;首都师范大学计算机科学联合研究院,北京100037
基金项目:国家"863"计划基金资助项目 
摘    要:协同过滤技术应用于个性化推荐系统中,稀疏性问题和可扩展性问题成为亟需解决的问题。针对传统方法的不足,提出一种凭借邻居数做决策的方法,比较各个待测位置的用户邻居数和项目邻居数,由数量多的一方作预测,同时对预测值判定给出一种合理而有效的度量方法。实验结果表明,该方法能够提高推荐质量。

关 键 词:个性化推荐  邻居数  协作过滤  平均绝对误差

Collaborative Filtering Recommendation Algorithm Based on Neighbor Decision-making
LI Chun,ZHU Zhen-min,GAO Xiao-fang,CHEN Yuan-fei. Collaborative Filtering Recommendation Algorithm Based on Neighbor Decision-making[J]. Computer Engineering, 2010, 36(13): 34-36,39
Authors:LI Chun  ZHU Zhen-min  GAO Xiao-fang  CHEN Yuan-fei
Affiliation:(1. Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080; 2. College of Information Engineering, Xiangtan University, Xiangtan 411105; 3. Joint Faculty of Computer Scientific Research, Capital Normal University, Beijing 100037)
Abstract:Collaborative filtering has been applied in personalized recommendation system successfully,sparsity problem and scalability problem become two big problems which remain unresolved.To slove the problem of traditional method,this paper propose a decision-making method relying on the number of neighbors.The method compares the number of user’s neighbors and item’s neighbors in every unpredicted position,and chooses the bigger one to make predicting.In addition,a reasonable and effective measurement is put forward to judge predicting.Experimental result shows that the quality of recommendation is largely improved.
Keywords:personalized recommendation  number of neighbors  collaborative filtering  Mean Absolute Error(MAE)
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号