首页 | 本学科首页   官方微博 | 高级检索  
     


A Neural Network Approach to Planar-Object Recognition in 3D Space
Authors:H.C. Sim  R.I. Damper
Affiliation:(1) Image, Speech and Intelligent Systems Research Group, Department of Electronics and Computer Science, University of Southampton, Southampton, UK, GB
Abstract:
Most existing 2D object recognition algorithms are not perspective (or projective) invariant, and hence are not suitable for many real-world applications. By contrast, one of the primary goals of this research is to develop a flat object matching system that can identify and localise an object, even when seen from different viewpoints in 3D space. In addition, we also strive to achieve good scale invariance and robustness against partial occlusion as in any practical 2D object recognition system. The proposed system uses multi-view model representations and objects are recognised by self-organised dynamic link matching. The merit of this approach is that it offers a compact framework for concurrent assessments of multiple match hypotheses by promoting competitions and/or co-operations among several local mappings of model and test image feature correspondences. Our experiments show that the system is very successful in recognising object to perspective distortion, even in rather cluttered scenes. Receiveed: 29 May 1998?,Received in revised form: 12 October 1998?Accepted: 26 October 1998
Keywords:: Dynamic link matching   Gabor wavelets   Neural networks   Object recognition   Perspective transformation   Simulated annealing
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号