首页 | 本学科首页   官方微博 | 高级检索  
     

用Mathematica软件及Jacobian方法证明一、二阶热力学偏导数关系式
引用本文:李志伟. 用Mathematica软件及Jacobian方法证明一、二阶热力学偏导数关系式[J]. 计算机与应用化学, 2002, 19(5): 665-666
作者姓名:李志伟
作者单位:天津大学理学院,天津,300072
摘    要:用Jacobian方法证明热力学函数的一、二阶偏导数关系式,其牵涉公式多而复杂,实际应用起来比较困难。利用Mathematica软件的逻辑编程及符号运算功能,再结合Jacobian方法,就使该问题证明变得概念清楚,简便易行。本文描述了其具体实施的方法。

关 键 词:Mathematica  热力学函数一阶偏导数(FPD)  热力学函数二阶偏导数(SPD)  Jacobian方法
文章编号:1001-4160(2002)05-665-666
修稿时间:2001-01-20

The proof of the relations among thermodynamic partial derivatives by jacobian transformation and mathematica
LI Zhi-wei. The proof of the relations among thermodynamic partial derivatives by jacobian transformation and mathematica[J]. Computers and Applied Chemistry, 2002, 19(5): 665-666
Authors:LI Zhi-wei
Abstract:The proof of the relations among thermodynamic partial derivatives by Jacobian transformation is difficult to use because the formulae involved are complicated. By using the logic programming and symbolic operation function of Mathematica software the Jacobian transformation becomes easy and the concept becomes clear. This paper describes the practical implementation of the method.
Keywords:Mathematica  thermodynamic first partial derivative (FPD)  thermodynamic second partial derivative (SPD)  Jacobian  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号