首页 | 本学科首页   官方微博 | 高级检索  
     


A parametric study of coupled‐mode flutter for MW‐size wind turbine blades
Authors:Pariya Pourazarm  Yahya Modarres‐Sadeghi  Matthew Lackner
Affiliation:Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts, USA
Abstract:
With the increasing size of offshore wind turbine rotors, the design criteria used for the blades may also evolve. Current offshore technology utilizes three relatively stiff blades in an upwind configuration. With the goal of minimizing the mass, there is an interest in the lightweight rotors that instead utilize two flexible blades oriented downwind. These longer blades are more flexible and thus susceptible to experience flow‐induced instability. Coupled‐mode flutter is one of the destructive aeroelastic instabilities that can occur in flexible structures subjected to aerodynamic loading. Because of variation in one of the system parameters, e.g., flow velocity, structural modes coalesce at a critical flow velocity, and coupled‐flutter occurs. In the present work, a parametric study is conducted in order to study the influence of the natural frequencies in the torsional and flapwise directions on the critical flutter speed for wind turbine blades. Three MW‐size wind turbine blades are studied using a three‐dimensional blade model, which includes coupled flapwise and torsional displacements. The results show that the three blades have very similar behavior as the system parameters vary. It is shown that the first torsional natural frequency and the ratio of the first torsional natural frequency to the first flapwise natural frequency are the most critical parameters affecting the onset of instability. Critical flutter speeds even lower than the blade rated speed can be observed for blades with low torsional natural frequencies. Copyright © 2015 John Wiley & Sons, Ltd.
Keywords:blade instability  coupled‐mode flutter  MW‐size
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号