首页 | 本学科首页   官方微博 | 高级检索  
     

基于视觉及多特征的前方车辆检测算法
引用本文:段建民, 刘冠宇, 郑榜贵. 基于视觉及多特征的前方车辆检测算法[J]. 北京工业大学学报, 2015, 41(9): 1326-1333. DOI: 10.11936/bjutxb2014050061
作者姓名:段建民  刘冠宇  郑榜贵
作者单位:1.北京工业大学 城市交通学院, 北京 100124
基金项目:北京市教育委员会科技创新平台项目(JJ002790200802)
摘    要:针对现有视频车辆检测算法受光照、噪声等环境因素影响大,漏检和误检率高,难以同时满足鲁棒性及实时性的问题,提出了一种完整的前方车辆检测算法.该算法在改进的Hough变换提取车道线的基础上,首先对图像进行自适应二值化处理,通过腐蚀、膨胀法滤除干扰点;使用简洁有效的方法进行阴影线的合并及ROI区域的提取;算法利用目标区域内的信息熵、车尾对称性特征对感兴趣区域(region of interest,ROI)进行筛选和判别,降低了算法的漏检和误检率;使用改进的Robinson方向检测算子提取车辆边界,取得了较好的效果.结果表明:在处理分辨率为640×480的视频时,检测正确率89%,运算速度平均为17.6帧/s.

关 键 词:车辆检测  机器视觉  智能车辆  阴影特征  对称性检测
收稿时间:2014-05-23

Front Vehicle Identification Algorithm Based on Visual and Multi-feature
DUAN Jian-min, LIU Guan-yu, ZHENG Bang-gui. Front Vehicle Identification Algorithm Based on Visual and Multi-feature[J]. Journal of Beijing University of Technology, 2015, 41(9): 1326-1333. DOI: 10.11936/bjutxb2014050061
Authors:DUAN Jian-min  LIU Guan-yu  ZHENG Bang-gui
Affiliation:1.College of Metropolitan Transportation,Beijing University of Technology, Beijing 100124, China
Abstract:Existing algorithms of video vehicle detection can be affected by light, noise and other environmental factors with high missed and false detection rate, and it is also difficult to meet robust and real-time, a complete algorithm of front vehicle detection was presented. On the basis of the improved Hough transform extracting the lane, this algorithm first processed the image by adaptive binarization, filtering out interference point through method of corrosion and expansion. Shaded area was merged and the ROI was extracted in simple and effective way. This algorithm could utilize entropy and rear symmetry characteristics to screen and discern the ROI area, reducing the missing and false detection rate. Good results were achieved by using Robinson-direction detection operator to extract the boundary of vehicle. Results show that when the video has a resolution of 640 í480 pixels, the correct recognition rate has achieved 89.4%, and there will be 17.65 frame to be processed within per second.
Keywords:overall optimal threshold  machine vision  lane detection  road recognition  intelligent vehicle
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京工业大学学报》浏览原始摘要信息
点击此处可从《北京工业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号