首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal interaction between laminar film condensation and forced convection along a conducting wall
Authors:H -T Chen  S -M Chang
Affiliation:(1) Present address: Department of Mechanical Engineering, National Cheng Kung University, 701 Tainan, Taiwan Republic of China
Abstract:Summary A theoretical analysis is presented to investigate the thermal interaction between laminar film condensation of a saturated vapor and a forced convection system separated by a heat conducting wall. In this work, the effect of the wall thermal resistance is considered. It is assumed that the countercurrent boundary layer flow is formed on the two sides. Governing boundary layer equations together with their corresponding boundary conditions for film condensation and forced convection are all cast into dimensionless forms by using the non-similarity transformation. The resulting system of equations is solved by using the local non-similarity method in conjunction with the fourth order Runge-Kutta method in conjunction with the Nachtsheim-Swigert iteration scheme. The total heat flux through the wall and the wall temperature distribution are determined. The present results show that the effect of the forced convection Prandtl number Pr c is not negligible for large values of the thermal resistance ratioA *, and the effect ofA * and Pr c on the overall heat transfer through the wall is more pronounced than that of the Jakob number and film Prandtl number.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号