首页 | 本学科首页   官方微博 | 高级检索  
     

基于品类聚类的关联规则优化算法
引用本文:赵永尊,张谧,赵卫东,李银胜. 基于品类聚类的关联规则优化算法[J]. 计算机应用与软件, 2007, 24(1): 140-142,184
作者姓名:赵永尊  张谧  赵卫东  李银胜
作者单位:复旦大学信息学院,上海,200433;复旦大学信息学院,上海,200433;复旦大学信息学院,上海,200433;复旦大学信息学院,上海,200433
摘    要:
提出了一种基于品类聚类的关联规则优化算法.该算法首先根据文中定义的品类特征向量,用结构化的数据来表示事务;然后根据一种基于密度的聚类算法,对结构化的数据进行聚类,同时将对应的原始事务进行聚类;最后根据聚类后得到的类的长度以及用户指定的最小支持度,确定类内的最小支持度,在类内挖掘关联规则.实验结果表明,与传统算法相比,该算法效率较高,具有一定的实用价值.

关 键 词:品类信息  事务聚类  关联规则
修稿时间:2005-05-24

AN IMPROVED ALGORITHM BASED ON CATEGORY CLUSTERING FOR MINING ASSOCIATION RULES
Zhao Yongzun,Zhang Mi,Zhao Weidong,Li Yinsheng. AN IMPROVED ALGORITHM BASED ON CATEGORY CLUSTERING FOR MINING ASSOCIATION RULES[J]. Computer Applications and Software, 2007, 24(1): 140-142,184
Authors:Zhao Yongzun  Zhang Mi  Zhao Weidong  Li Yinsheng
Affiliation:College of Information, Fudan University, Shanghai 200433, China
Abstract:
A category-based algorithm is proposed in this paper to enhance mining association rules.This algorithm involves three steps of processing:transactions are first represented as transaction-category points based on the predefined category feature vectors;these transaction-category points and transactions are then clustered with the applied clustering algorithm;finally,the minimum support of the cluster is calculated based on the result number of points in a specified cluster and the user-defined minimum support,and a traditional algorithm is applied to get association rules in the cluster.The experimental result shows that this algorithm is effective and practical.
Keywords:Category information Transaction clustering Association rules
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号