首页 | 本学科首页   官方微博 | 高级检索  
     

孤立点检测改进径向基神经网络动态预测模型
引用本文:梁斌梅. 孤立点检测改进径向基神经网络动态预测模型[J]. 计算机工程与应用, 2009, 45(28): 52-54. DOI: 10.3778/j.issn.1002-8331.2009.28.015
作者姓名:梁斌梅
作者单位:广西大学,数学与信息科学学院,南宁,530004
基金项目:广西教育厅科研项目资助 
摘    要:提出一种基于凝聚层次聚类消除孤立点的新方法,借助聚类树识别孤立点。去除孤立点后,利用RBF网络建立动态预测模型,实验结果表明,网络的训练和泛化性能较消除孤立点前有明显提高。说明凝聚层次聚类方法用在孤立点检测方面是有效可行的,消除孤立点后建立的模型收敛速度快,泛化能力更优。

关 键 词:孤立点检测  凝聚层次聚类  径向基神经网络  预测
收稿时间:2009-06-29
修稿时间:2009-7-31 

Outliers detection for improving dynamic prediction model created by radial basis function neural network
LIANG Bin-mei. Outliers detection for improving dynamic prediction model created by radial basis function neural network[J]. Computer Engineering and Applications, 2009, 45(28): 52-54. DOI: 10.3778/j.issn.1002-8331.2009.28.015
Authors:LIANG Bin-mei
Affiliation:College of Mathematics and Information Science,Guangxi University,Nanning 530004,China
Abstract:Propose a new agglomerative hierarchical clustering based method to eliminate outliers,with clustering tree to identify outliers.After removing the outliers,build a dynamic prediction model by RBF network,and the experimental results show that the training and generalization performance are markedly improved,which means the agglomerative hierarchical clustering method is effective and workable for outlier detection.After the elimination of outliers,the model shows faster converging speed and higher generalization ability.
Keywords:outlier detection  agglomerative hierarchical clustering  radial basis function neural network  prediction
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号