首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of biocide treatments on durability of wood and bamboo/high density polyethylene composites against algal and fungal decay
Authors:Jing Feng  Juan Chen  Mingjie Chen  Xiulin Su  Qingshan Shi
Affiliation:1. State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China;2. Guangdong Demay Biotechnology Co., Ltd., Guangzhou, China
Abstract:The main objective of this study was to investigate the algal and fungal resistance of biocide‐treated wood flour (WF)/high density polyethylene (HDPE) and bamboo flour (BF)/HDPE composites. The biocides included 4,5‐dichloro‐2‐octyl‐isothiazolone (DCOIT), zinc pyrithione (ZPT), and carbendazim (MBC). Resistance to algae and fungi was evaluated by artificially accelerated tests. Treated and untreated samples were exposed to algae (Chlorella vulgaris, Ulothrix sp., Scenedesmus quadricauda, and Oscillatoria sp.) and fungi (Coriolus versicolor and Poria placenta) for 21 days and 12 weeks, respectively. The volatile components of WF and BF extractives were analyzed by gas chromatography‐mass spectrometry (GC‐MS). The results indicated that incorporation of DCOIT, ZPT, and MBC effectively enhanced the durability of WF/HDPE and BF/HDPE composites against algal and fungal decay. Accordingly, DCOIT, ZPT, and MBC can be used as potential biocides for both WF/HDPE and BF/HDPE composites. GC‐MS analysis suggested that palmitic acid, oleic acid, stigmasta‐3,5‐dien‐7‐one, and vanillin in WF possibly provided some resistance to fungal attack, whereas di (2‐ethylhexyl) phthalate and linoleic acid in BF were responsible for algal resistance. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45148.
Keywords:biodegradable  biopolymers and renewable polymers  cellulose and other wood products  thermoplastics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号